ЛАБОРАТОРНАЯ РАБОТА 7

ОПРЕДЕЛЕНИЕ СКОРОСТИ СВОБОДНОГО ОСАЖДЕНИЯ ТВЕРДЫХ ЧАСТИЦ В ЖИДКОСТЯХ

Определение скорости движения в жидкостях твёрдых частиц и пузырей в гравитационном поле является важной составной частью расчёта процессов осаждения, псевдоожижения и барботажа. При проведении этих процессов происходит массовое (стесненное) движение твёрдых частиц и пузырей. При этом скорость такого стеснённого движения рассчитывается исходя из скорости свободного движения, т.е. движения одиночных частиц.

В начале осаждения твёрдой частицы в жидкости её движение не стационарно. Если начальная скорость частиц (t=0) равна нулю, то под действием гравитации она ускоряется до того момента, когда сила тяжести за вычетом силы Архимеда не уравновесится силой сопротивления среды. С этого момента движение частицы становится стационарным.

Скорость свободного осаждения твёрдой частицы при стационарном движении может быть найдена из баланса сил, действующих на частицу:

$$\xi \cdot \rho \cdot S \cdot \frac{u^2}{2} = V_{\mathbf{q}} \cdot (\rho_{\mathbf{S}} - \rho) \cdot g, \tag{7.1}$$

где ξ — коэффициент сопротивления движению (осаждению) твёрдой частицы; ρ_S , ρ — плотность частицы и плотность жидкости соответственно, кг/м³; S — площадь проекции частицы на плоскость, перпендикулярную вектору скорости, м²; u — скорость частицы, м/с; $V_{\rm ч}$ — объём частицы, м³; g — ускорение свободного падения, м/с².

В левой части уравнения (7.1) представлена сила сопротивления среды, в правой – сила тяжести за вычетом силы Архимеда.

Эквивалентный диаметр частицы произвольной формы равен диаметру шара, имеющего тот же объём, что и частица:

$$d_{_{9\,\mathrm{u}}} = \sqrt[3]{\frac{6 \cdot V_{_{\mathrm{u}}}}{\pi}},\tag{7.2}$$

где $V_{\rm q}$ – объём частицы (м³), который может быть рассчитан аналитически (для тел правильной формы), либо найден экспериментально.

Фактор формы частицы равен отношению площади поверхности

эквивалентного шара к площади поверхности частицы:

$$\Phi = \frac{A_0}{A_{\rm q}},\tag{7.3}$$

где $A_0 = \pi \cdot d_{9 \text{ ч}}^2$ — площадь поверхности эквивалентного шара, м²; $A_{\text{ч}}$ — площадь поверхности частицы, м².

Для процесса осаждения частиц различают следующие режимы движения:

- 1) ламинарный режим
 - область ползущего течения при $Re_{oc} < 0.1$, Ar < 1.8;
 - ламинарно-инерционная область при $0.1 < Re_{oc} < 2; 1.8 < Ar < 36;$
- 2) переходный ражим
 - область присоединённых вихрей $2 < Re_{oc} < 500$, 36 < Ar < 90000;
- 3) турбулентный режим
 - область вихревого следа (Кармановская область)

$$500 < \text{Re}_{\text{oc}} < 1000; 9 \cdot 10^4 < \text{Ar} < 3.6 \cdot 10^5;$$

- область турбулентного следа $Re_{oc} > 1000$, $Ar > 3,6 \cdot 10^5$.

Число (критерий) Рейнольдса для одиночной осаждающейся частицы:

$$Re_{oc} = \frac{v_{oc} \cdot d_{gq} \cdot \rho}{\mu}, \tag{7.4}$$

где $v_{\rm oc}$ – скорость свободного осаждения одиночной частицы.

Число (критерий) Архимеда для осаждающейся частицы:

$$Ar = \frac{d_{9\,\mathrm{q}}^3 \cdot g \cdot \rho^2}{\mu^2} \cdot \frac{\rho_{\mathrm{S}} - \rho}{\rho}.$$
 (7.5)

Коэффициент сопротивления при осаждении частицы:

- в ламинарном режиме $\xi = \frac{24}{Re_{oc}}$,
- в переходном режиме $\xi = \frac{18,5}{\text{Re}_{\text{oc}}^{0,6}},$
- в турбулентном режиме $\xi \approx 0,48$.

Скорость осаждения может быть найдена несколькими способами:

1) скорость свободного осаждения твёрдой сферической частицы при известном коэффициенте сопротивления

$$v_{\rm oc}^{\rm c\phi} = \sqrt{\frac{4}{3} \cdot \frac{d_{\rm gq} \cdot g}{\xi} \cdot \frac{\rho_{\rm S} - \rho}{\rho}};$$

2) скорость свободного осаждения твёрдой сферической частицы в ламинарном режиме

$$v_{\text{oc}}^{\text{c}\phi} = \frac{{d_{\text{3 ч}}}^2 \cdot g \cdot (\rho_{\text{S}} - \rho)}{18 \cdot \mu}$$
 — закон осаждения Стокса;

3) скорость свободного осаждения жидкой частицы в ламинарном режиме

$$v_{\text{oc}} = \frac{d_{_{3\,\text{\tiny q}}}^{^{2}} \cdot g \cdot (\rho_{_{\text{\tiny q}}} - \rho) \cdot (\mu_{_{\text{\tiny q}}} + \mu)}{6 \cdot \mu \cdot (3 \cdot \mu_{_{\text{\tiny q}}} + 2 \cdot \mu)}$$
 – уравнение Адамара,

где $\rho_{\scriptscriptstyle \rm H}$ – плотность частицы, кг/м³; ρ – плотность среды, кг/м³; $\mu_{\scriptscriptstyle \rm H}$ – вязкость частицы, мПа·с; μ – вязкость частицы, мПа·с;

4) скорость свободного осаждения твёрдой сферической частицы через числа Архимеда и Рейнольдса

$$Re_{oc} = \frac{Ar}{18 + 0.6 \cdot \sqrt{Ar}}, \qquad v_{oc}^{c\phi} = Re_{oc} \frac{\mu}{d_{3y} \cdot \rho}; \qquad (7.6)$$

5) скорость стеснённого осаждения твёрдой сферической частицы через числа Архимеда и Рейнольдса

$$Re_{oc} = \frac{Ar \cdot \varepsilon_{c}^{4,75}}{18 + 0.6 \cdot \sqrt{Ar \cdot \varepsilon_{c}^{4,75}}}, \qquad v_{oc}^{c\phi} = Re_{oc} \frac{\mu}{d_{9q} \cdot \rho}, \qquad (7.7)$$

где $\varepsilon_c = 1 - x_c$ — порозность (доля свободного объёма) дисперсной системы (суспензии или аэрозоля), из которой оседают частицы; x_c — объёмная доля твёрдой фазы в дисперсной системе.

Для вычисления скорости осаждения частицы неправильной формы следует скорость, полученную для эквивалентной (имеющей такой же объём) сферической частицы умножить на коэффициент формы:

$$v_{\rm oc} = v_{\rm oc}^{\rm c\phi} \cdot \varphi \,. \tag{7.8}$$

Коэффициент формы может быть найден:

1) если известен фактор формы частиц

Re
$$\leq 0.2$$
: $\varphi = \sqrt{0.843 \cdot \lg \Phi + 1}$;
 $0.2 < \text{Re} \leq 2000$: $\varphi = \Phi^{0.45} \cdot \text{Re}^{-0.075 \cdot \sqrt{\Phi^{-1} - 1}}$;
Re ≥ 2000 : $\varphi = \left[1 + 11.6 \cdot \left(\Phi^{-0.5} - 1\right)\right]^{-0.5}$. (7.9)

- 2) если форма частиц может быть оценена лишь качественно
 - для сферических частиц $\phi = 1$,
 - для округлых частиц $\phi = 0.77$,
 - для угловатых частиц $\phi = 0.70$,
 - для продолговатых частиц $\phi = 0.62$,
 - для пластинчатых частиц $\phi = 0.46$.

Цель работы: экспериментальное и теоретическое определение скорости осаждения твёрдых частиц различной формы и скорости всплытия пузырей.

Описание установки

Установка состоит из трёх стеклянных цилиндров, каждый из которых заполнен одной из трёх жидкостей: водой, глицерином и трансформаторным маслом. На каждом из цилиндров есть метки, находящиеся на расстоянии 1 м друг от друга.

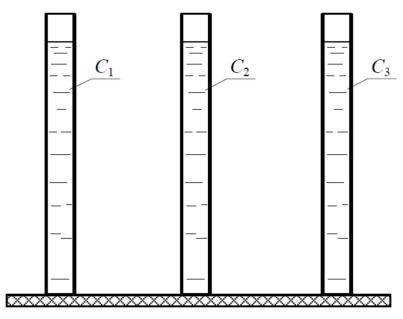


Рис. 1.7. Лабораторная установка для определения скорости гравитационного осаждения частиц

Методика выполнения работы

Перед началом работы получают у учебного мастера штангенциркуль, весы и секундомер, а также набор осаждаемых тел (частиц) различной формы. В качестве осаждаемых тел используются шарики, диски и цилиндры, выполненные из алюминия, полиэтилена, полипропилена, поливинилхлорида (ПВХ), силикатного и органического стекла, свинца и стали.

Штангенциркулем измеряют ключевые размер частицы:

- диаметр для шарика;
- диаметр и толщину для диска;
- диаметр и длину для цилиндрической частицы.

С помощью весов измеряют массу частицы. При невозможности измерения массы одиночной частицы (вследствие недостаточной чувствительности весов), измеряют массу навески частиц и находят массу одной частицы, разделив массу навески на число частиц.

Измеряют время осаждения частиц в жидкости. Для этого частицу отпускают над поверхностью жидкости в каждом цилиндре и секундомером определяют время её движения между двумя метками.

Обработка экспериментальных данных

Определяют экспериментальную скорость осаждения частиц, разделив длину пути частицы (расстояние между метками на цилиндрах) на экспериментально измеренное время осаждения частицы.

Вычисляют объём частицы:

- если частица представляет собой шар диаметром d

$$V_{\rm q}=\frac{\pi}{6}\cdot d^3;$$

— если частица представляет собой цилиндр диаметром d и высотой (длиной, толщиной) h

$$V_{\rm q}=\frac{\pi}{4}\cdot d^2\cdot h.$$

Рассчитывают эквивалентный диаметр частиц по формуле (7.2).

Очевидно, что для сферической частицы эквивалентный диаметр равен диаметру частицы $d_{\mathfrak{I},\mathfrak{I}}=d.$

Разделив массу частицы на объём, получают плотность частицы:

$$ho_{S}=rac{m_{
m q}}{V_{
m q}}.$$

Рассчитывают число (критерий) Архимеда по уравнению (7.5).

Рассчитывают число (критерий) Рейнольдса и теоретическую скорость осаждения одиночной сферической частицы по уравнению (7.6).

Для частицы неправильной формы рассчитываем геометрический фактор формы по уравнению (7.3), кинетический коэффициент формы по уравнениям (7.9) и пересчитываем с помощью уравнения (7.8) скорость осаждения эквивалентной сферической частицы в скорость осаждения частицы неправильной формы.

Сравниваем экспериментальные и теоретические скорости осаждения частиц.

Контрольные вопросы

- 1. Каковы условия установления стационарного осаждения частицы?
- 2. Какое значение площади (S) используется в уравнении баланса сил?
- 3. Сформулируйте физический смысл чисел Re и Ar.
- 4. Какова граница медленного движения, принятая в данной работе?
- 5. Дайте определение эквивалентной сферы.
- 6. Что такое динамический (кинетический) коэффициент формы и параметр сферичности (геометрический фактор формы)?
- 7. В чём отличие стеснённого и свободного осаждения?
- 8. Сформулируйте схему расчёта скорости осаждения сферической и несферической частицы.